

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 2752-2755

AgOTf-catalyzed one-pot reaction of 2-alkynylbenzaldehyde, amine, and sodium borohydride

Qiuping Ding^{a,c}, Xingxin Yu^a, Jie Wu^{a,b,*}

^a Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences,

354 Fenglin Road, Shanghai 200032, China

^c Analytical Centre for Physics and Chemistry, Jiangxi Normal University, 437 West Beijing Road, Nanchang 330027, China

Received 3 December 2007; revised 22 February 2008; accepted 26 February 2008 Available online 29 February 2008

Abstract

One-pot reactions of 2-alkynylbenzaldehydes, amines, and sodium borohydride catalyzed by AgOTf under mild conditions provide a facile protocol for the concise synthesis of 1,2-dihydroisoquinoline derivatives.

© 2008 Elsevier Ltd. All rights reserved.

Keywords: 2-Alkynylbenzaldehydes; Amine; 1,2-Dihydroisoquinoline; Silver triflate; Sodium borohydride

As a privileged scaffold, 1,2-dihydroisoquinoline is found in many natural products and pharmaceuticals that exhibit remarkable biological activities.^{1,2} Significant effort continues to be given to the development of new 1,2-dihydroisoquinoline-based structures and new methods for their construction.³⁻⁶ Recently, metal-catalyzed 6-endomode cyclization of 2-(1-alkynyl)arylaldimine is reported as a powerful synthetic tool for the synthesis of isoquinolines and 1,2-dihydroisoquinolines.^{3,4} Among these, various nucleophiles, such as alkynes, allylstannanes, silyl enol ethers, and active methylene compounds, have been employed in the Lewis acid catalyzed reaction of 2-(1-alkynvl)arylaldimine, leading to 1,2-dihydroisoquinoline derivatives.³ Takemoto also investigated the cyclization of 2-(1alkynyl)arylaldimine accompanied by hydride reduction of the iminium intermediate using various reducing agents.^{3a} It was found that the use of Et₃SiH was not effective for this purpose in the presence of different Lewis acid catalysts, and the desired cyclic adduct could be obtained in 80% yield by the reaction of 2-(1-alkynyl)arylaldimine

0040-4039/\$ - see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.02.143

1 with 2 equiv of Hantzsch ester⁷ in the presence of $AuCl(PPh_3)/AgNTf_2$ catalyst (10 mol %) (Scheme 1).⁸ However, in this reaction, expensive Hantzsch ester and catalyst with high catalytic loading has to be utilized in order to obtain a respectable yield. Moreover, the starting material 2-alkynylarylaldimine 1 should be prepared in advance via condensation of the corresponding aldehyde and amine. Thus, it is highly desired to develop more effective and practical synthetic methodology using reducing agent for 1,2-dihydroisoquinoline formation. Recently, we described that the functionalized 1,2-dihydroisoquinolines could be formed via multi-component reactions of

^{*} Corresponding author. Tel.: +86 21 5566 4619; fax: +86 21 6510 2412. *E-mail address:* jie_wu@fudan.edu.cn (J. Wu).

2-(1-alkynyl)benzaldehydes, amines, and diethyl phosphite or organozinc reagents.⁹ Prompted by these results, we envisioned that one-pot cyclization of 2-(1-alkynyl)benzaldehydes, in the presence of amines and reducing agent may be possible via hydride reduction, as reported herein.

The reaction was initially studied with 2-alkynylbenzaldehydes 2a, which was selected as suitable substrate for reaction development. We found that, in the presence of silver triflate as catalyst and sodium borohydride as the hydride source, the reaction of 2-alkynylbenzaldehydes 2a with *p*-anisidine 3a in EtOH afforded the desired product 4a in 56% yield (Table 1, entry 1). Following an extensive investigation, we observed that the result could be dramatically improved in the presence of proline as additive (88% vield, Table 1, entry 2). Inferior results were displayed when other Lewis acids were employed in the reaction. For instance, only 34% yield of product 4a accompanied with 48% of product 5a was obtained when CuI was used as the catalyst (Table 1, entry 3). Similar results were generated while other Lewis acids such as Cu(OTf)₂, Zn(OTf)₂, In(OTf)₃, Dy(OTf)₃, and FeCl₃ were utilized in the reaction (Table 1, entries 4–8). These results indicated that AgOTf is the most efficient catalyst for this kind of transformation and only product 4a was detected in the reaction. Further

Table 1

Screening conditions for the reaction of alkynylbenzaldehydes 2a, *p*-anisidine 3a with sodium borohydride

^a Isolated yield based on 2-alkynylbenzaldehydes 2a.

^b In the presence of 30 mol % of proline.

^c Without molecular sieves.

screening revealed that ethanol is the solvent of choice. Other solvents such as dichlorometahne, DCE, and MeCN gave unsatisfactory results (Table 1, entries 9–11). Lower yield was obtained when pyrrolidine or acetic acid was used as additive instead of proline (Table 1, entries 12 and 13). Similar yield was observed when the catalytic amount of AgOTf was reduced to 2-5 mol % (Table 1, entries 14 and 15). However, the reaction was retarded when 0.1 mol% of AgOTf was employed in the reaction (data not shown in Table 1). AgOTf is demonstrated crucial for the reaction. Without AgOTf, only 13% yield of product 4a was obtained in the presence of proline (Table 1, entry 16), while product 5a was generated in the absence of proline (62% yield, Table 1, entry 17). Increasing amount of proline could not improve the result (76% yield, Table 1, entry 18). Slightly lower yield of desired 4a was observed without the addition of molecular sieves (78% yield, Table 1, entry 19).

To explore the scope of the reaction, a set of substrates were subjected to the reaction under optimized conditions (AgOTf (2–5 mol %), proline (10 mol %), 4 Å MS, ethanol, room temperature), and the results are summarized in Table 2. Complete conversion and moderate to good isolated yields were observed for most of cases utilized. For the reactions of 2-alkynylbenzaldehydes **2a** with anilines, better results were obtained when anilines with electrondonating groups attached on the aromatic ring were employed. For example, 2-alkynylbenzaldehyde **2a** reacted with 2-methoxybenzeneamine **3c** leading to the corresponding product **4c** in 80% yield (Table 2, entry 3), while 56% yield of product **4f** was afforded when 4-chlorobenzeneamine **3f** was used in the reaction (Table 2, entry 6).

Table 2

AgOTf-Catalyzed one-pot reactions of 2-alkynylbenzaldehydes $\mathbf{2}$, amines $\mathbf{3}$, and sodium borohydride¹⁰

	CHO + R ² -NH ₂ + R ² -NH ₂ + R ² -NH ₂ + 2. NaBH ₄		$\stackrel{(1)}{\overset{(6)}{\longrightarrow}} \stackrel{(1)}{\underset{(1)}{\overset{(1)}{\longrightarrow}}} \stackrel{(1)}{\underset{(1)}{\overset{(2)}{\longrightarrow}}} \stackrel{(1)}{\underset{(1)}{\overset{(2)}{\longrightarrow}}} \stackrel{(2)}{\underset{(1)}{\overset{(2)}{\longrightarrow}}} \stackrel{(2)}{\underset{(1)}{\overset{(2)}{\longrightarrow}}} \stackrel{(2)}{\underset{(2)}{\overset{(2)}{\longrightarrow}}} \stackrel{(2)}{\underset{(2)}{\overset{(2)}{\overset{(2)}{\longrightarrow}}} \stackrel{(2)}{\underset{(2)}{\overset$	
Entry	R ¹	R ²	Product	Yield ^a (%)
1	$C_{6}H_{5}(2a)$	$4-MeOC_6H_4$ (3a)	4a	88
2	$C_6H_5(2a)$	$3-\text{MeOC}_6\text{H}_4$ (3b)	4b	75
3	$C_{6}H_{5}(2a)$	$2-\text{MeOC}_6\text{H}_4$ (3c)	4c	80
4	$C_{6}H_{5}(2a)$	$4-MeC_{6}H_{4}$ (3d)	4d	80
5	$C_{6}H_{5}(2a)$	C_6H_5 (3e)	4 e	96
6	$C_{6}H_{5}(2a)$	$4-ClC_{6}H_{4}$ (3f)	4 f	56
7	$C_{6}H_{5}(2a)$	$4-FC_{6}H_{4}(3g)$	4g	60
8	$C_{6}H_{5}(2a)$	$3-NO_2C_6H_4$ (3h)	4h	73
9	$C_{6}H_{5}(2a)$	3-CF ₃ C ₆ H ₄ (3i)	4i	67
10	$C_{6}H_{5}(2a)$	$C_6H_5CH_2$ (3j)	4j	Trace
11	$C_{6}H_{5}(2a)$	<i>n</i> -Hexyl (3k)	4k	Trace
12	$4\text{-MeOC}_{6}\text{H}_{4}$ (2b)	$4-MeOC_6H_4$ (3a)	41	90
13	$4-MeOC_{6}H_{4}(2b)$	$C_{6}H_{5}(3e)$	4m	73
14	$4\text{-MeOC}_6\text{H}_4$ (2b)	$4-FC_{6}H_{4}(3g)$	4n	94
15	Cyclopropyl (2c)	4-MeOC _€ H ₄ (3a)	40	Trace

^a Isolated yield based on 2-alkynylbenzaldehydes 2.

Although anilines worked well in this reaction, only a trace amount of product was observed when aliphatic amines. such as benzylamine and *n*-hexylamine, were utilized in the reactions of 2-alkynylbenzaldehyde 2a (Table 2, entries 10 and 11). The R^1 attached on the alkynyl group is also important in this kind of transformation. When 4methoxyphenyl group was used as the replacement of phenyl group in substrate 2, good yields were generated despite *p*-anisidine 3a or 4-fluorobenzeneamine 3g was employed in the reaction (Table 2, entries 12 and 14). However, to our surprise, only a trace amount of product was detected when R¹ was changed to cyclopropyl group due to the stability of the product (Table 2, entry 15). Formyl group in substrate 2 is crucial in this reaction. When formyl group was replaced by acetyl group (Scheme 2), no reaction occurred at all which was presumably due to the instability of formed imine in situ.

In summary, we have described AgOTf-catalyzed onepot reactions of 2-alkynylbenzaldehydes, amines, and sodium borohydride under mild conditions, which provide a facile and efficient protocol to facilitate the concise synthesis of 1,2-dihydroisoquinoline derivatives. We believe that this method provides an excellent complement to the 1,2-dihydroisoquinoline synthesis. The advantages of this method include the use of inexpensive reagent and catalyst under mild conditions, and experimentally operational ease.

Acknowledgments

We thank Dr. Renhua Fan for his invaluable advice during the course of this research. Financial support from the National Natural Science Foundation of China (20772018), Shanghai Pujiang Program, and Program for New Century Excellent Talents in University (NCET-07-0208) is gratefully acknowledged.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet. 2008.02.143.

References and notes

 For selected examples, see: (a) Bentley, K. W. In *The Isoquinoline Alkaloids*; Harwood Academic: Australia, 1998; Vol. 1; (b) Trotter, B. W.; Nanda, K. K.; Kett, N. R.; Regan, C. P.; Lynch, J. J.; Stump, G. L.; Kiss, L.; Wang, J.; Spencer, R. H.; Kane, S. A.; White, R. B.; Zhang, R.; Anderson, K. D.; Liverton, N. J.; McIntyre, C. J.; Beshore, D. C.; Hartman, G. D.; Dinsmore, C. J. *J. Med. Chem.* **2006**, *49*, 6954; (c) Ramesh, P.; Reddy, N. S.; Venkateswarlu, Y. *J. Nat. Prod.* **1999**, *62*, 780; (d) Oi, S.; Ikedou, K.; Takeuchi, K.; Ogino, M.; Banno, Y.; Tawada, H.; Yamane, T. PCT Int. Appl. (WO 2002062764 A1), 2002, 600 pp.

- For a review, see (a) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669; For recent communications, see (b) Chan, C.; Heid, R.; Zheng, S.; Guo, J.; Zhou, B.; Furuuchi, T.; Danishefsky, S. J. J. Am. Chem. Soc. 2005, 127, 4596; (c) Magnus, P.; Matthews, K. S. J. Am. Chem. Soc. 2005, 127, 12476; (d) Zheng, S.; Chan, C.; Furuuchi, T.; Wright, B. J. D.; Zhou, B.; Guo, J.; Danishefsky, S. D. Angew. Chem., Int. Ed. 2006, 45, 1754; (e) Vincent, G.; Williams, R. M.; Gan, E. F.; Williams, R. M. Angew. Chem., Int. Ed. 2007, 46, 1517.
- 3. (a) Obika, S.; Kono, H.; Yasui, Y.; Yanada, R.; Takemoto, Y. J. Org. Chem. 2007, 72, 4462. and references cited therein; (b) Asao, N.; Yudha, S. S.; Nogami, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2005, 44, 5526; (c) Yanada, R.; Obika, S.; Kono, H.; Takemoto, Y. Angew. Chem., Int. Ed. 2006, 45, 3822; (d) Asao, N.; Iso, K.; Yudha, S. S. Org. Lett. 2006, 8, 4149; (e) Mori, S.; Uerdingen, M.; Krause, N.; Morokuma, K. Angew. Chem., Int. Ed. 2005, 44, 4715; (f) Asao, N.; Chan, C. S.; Takahashi, K.; Yamamoto, Y. Tetrahedron 2005, 61, 11322; (g) Ohtaka, M.; Nakamura, H.; Yamamoto, Y. Tetrahedron Lett. 2004, 45, 7339; (h) Witulski, B.; Alayrac, C.; Tevzadze-Saeftel, L. Angew. Chem., Int. Ed. 2003, 42, 4257; (i) Yavari, I.; Ghazanfarpour-Darjani, M.; Sabbaghan, M.; Hossaini, Z. Tetrahedron Lett. 2007, 48, 3749; (j) Shaabani, A.; Soleimani, E.; Khavasi, H. R. Tetrahedron Lett. 2007, 48, 4743; (k) Wang, G.-W.; Li, J.-X. Org. Biomol. Chem. 2006, 4, 4063; (1) Diaz, J. L.; Miguel, M.; Lavilla, R. J. Org. Chem. 2004, 69, 3550.
- (a) Huang, Q.; Larock, R. C. J. Org. Chem. 2003, 68, 980; (b) Dai, G.; Larock, R. C. J. Org. Chem. 2003, 68, 920; (c) Dai, G.; Larock, R. C. J. Org. Chem. 2002, 67, 7042; (d) Huang, Q.; Hunter, J. A.; Larock, R. C. J. Org. Chem. 2002, 67, 3437; (e) Roesch, K. R.; Larock, R. C. J. Org. Chem. 2002, 67, 86; (f) Roesch, K. R.; Zhang, H.; Larock, R. C. J. Org. Chem. 2001, 66, 8042; (g) Roesch, K. R.; Larock, R. C. Org. Lett. 1999, 1, 553.
- 5. (a) Miller, R. B. Tetrahedron Lett. 1998, 39, 1721; (b) Lorsbach, B. A.; Bagdanoff, J. T.; Miller, R. B.; Kurth, M. J. J. Org. Chem. 1998, 63, 2244; (c) Lee, S. H.; Park, Y. S.; Nam, M. H.; Yoon, C. M. Org. Biomol. Chem. 2004, 2, 2170; (d) Taylor, S. J.; Taylor, A. M.; Schreiber, S. L. Angew. Chem., Int. Ed. 2004, 43, 1681; (e) Diaz, J. L.; Miguel, M.; Lavilla, R. J. Org. Chem. 2004, 69, 3550; (f) Ullah, E.; Rotzoll, S.; Schmidt, A.; Michalik, D.; Langer, P. Tetrahedron Lett. 2005, 46, 8997; (g) Hewavitharanage, P.; Danilov, E. O.; Neckers, D. C. J. Org. Chem. 2005, 70, 10653; (h) Takamura, M.; Funbashi, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 6327; (i) Funabashi, K.; Ratni, H.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 10784; (j) Alexakis, A.; Amiot, F. Tetrahedron: Asymmetry 2002, 13, 2117; (k) Taylor, M. S.; Tokunaga, N.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 6700; (1) Taylor, A. M.; Schreiber, S. L. Org. Lett. 2006, 8, 143; (m) Lu, S.; Wang, Y.; Han, X.; Zhou, Y. Angew. Chem., Int. Ed. 2006, 45, 2260.
- (a) Gensler, W. J.; Lawless, S. F.; Bluhm, A. L.; Dertouzos, H. J. Org. Chem. 1975, 40, 733; (b) Beugelmans, R.; Chastanet, J.; Roussi, G. Tetrahedron 1984, 40, 311; (c) Magnus, P.; Matthew, K. S.; Lynch, V. Org. Lett. 2003, 5, 2181; (d) Kadzimirsz, D.; Hildebrandt, D.; Merz, K.; Dyker, G. Chem. Commun. 2006, 661.
- (a) Ouellet, S. G.; Tuttle, J. B.; Macmillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32; (b) Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 3781; (c) Stoter, R. I.; Carrera, D. E.; Ni, Y.; Macmillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84; (d) Martin, N. J. A.; List, B. J. Am. Chem. Soc. 2006, 128, 13368; (e) Ruping, M.; Antonchick, A. P.; Thessmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683; (f) Ruping, M.; Antonchick, A. P.; Thessmann, T. Angew. Chem., Int. Ed. 2006, 45, 6751; (g) Menche, D.; Hassfeld, J.; Li, J.; Menche, G.; Ritter, A.; Rudolph, S. Org. Lett. 2006, 8, 741; (h) Mench, D.; Bohm, S.; Li, J.; Rudolph, S.; Zander, W. Tetrahedron Lett. 2007, 48, 365.

- Yamaguchi, R.; Hamasaki, T.; Utimoto, K. Chem. Lett. 1988, 913; Czombos, J.; Aelterman, W.; Tkachev, A.; Martins, J. C.; Tourwe, D.; Peter, A.; Toth, G.; Fulop, F.; Kimpe, N. D. J. Org. Chem. 2000, 65, 5469; Lu, S.-M.; Wang, Y.-Q.; Han, X.-W.; Zhou, Y.-G. Angew. Chem., Int. Ed. 2006, 45, 2260.
- Gao, K.; Wu, J. J. Org. Chem. 2007, 72, 8611; Sun, W.; Ding, Q.; Sun, X.; Fan, R.; Wu, J. J. Comb. Chem. 2007, 9, 690; Ding, Q.; Wu, J. Org. Lett. 2007, 9, 4959.
- General procedure: A solution of 2-alkynyl benzaldehyde 2 (0.30 mmol, 1.0 equiv), amine 3 (0.30 mmol, 1.0 equiv), AgOTf (2-5 mol %), proline (10 mol %), 4A MS (30 mg) in C₂H₅OH (3.0 mL) was stirred at room temperature under N₂ for 8 h, then

NaBH₄ (2.0 equiv) was added and the reaction mixture was stirred for another 5 min. The reaction solvent was evaporated and the residue was purified on silica gel to afford the corresponding product **4**. Selected example: 2-(4-Methoxyphenyl)-3-phenyl-1,2-dihydroisoquinoline (**4a**), colorless liquid, 88% yield; ¹H NMR (400 MHz, CDCl₃) δ 3.63 (s, 3H), 4.86 (s, 2H), 6.49 (s, 1H), 6.61 (d, J = 8.8 Hz, 2H), 6.79 (d, J = 8.8 Hz, 2H), 6.97 (d, J = 7.3 Hz, 1H), 7.10 (dt, J = 2.0, 7.3 Hz, 1H), 7.16–7.23 (m, 5H), 7.49 (d, J = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.2, 56.0, 110.6, 113.8, 123.4, 123.9, 124.8, 126.1, 127.2, 127.8, 127.9, 128.1, 128.5, 133.7, 137.2, 140.5, 144.2, 154.6. IR (film): 3047, 2924, 1601, 1508, 1452, 1383, 1244, 1035, 763 cm⁻¹; HRMS calcd for C₂₂H₁₉NO: 313.1467; found, 313.1475.